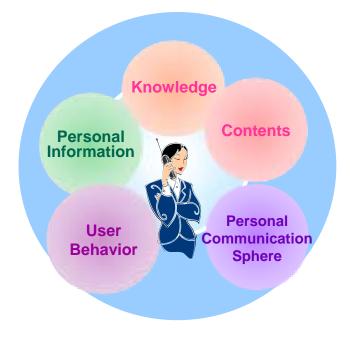
Future Services/Applications

Deokjai Choi 2010. Oct

What is Service?

- Provider vs Consumer
- IT Service: executing software component (a piece of application logic) which can be accessed, interactive, discriptive, ...
- Telecom service: what the user pay for
- Future Internet Service: a service will be provided through Future Internet

Look Back for IT Service


- Mainframe period: computing service
 For military purpose (bomb path calculation)
- PCs: word processing, spread sheet
 For business improvement
- Networking period: information search and transfer
- How can we name the coming future computing world?
 - Ubiquitous Computing Period?
 - SNS

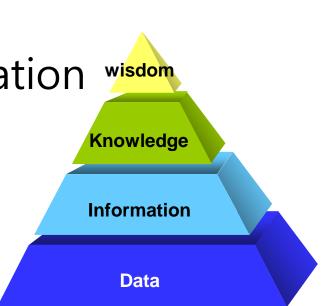
What are the characteristics for ubiquitous computing?

- Anytime, anywhere,...based on ubiquitous neworking (one of the characteristics of future Internet)
- Trends
 - Embedded processors
 - Various emerging networking technologies
 - BAN, PAN, VANet, AdHoc, P2P, Sensor Network, WiFi, Wibro, Fixed wireless, ...
 - Powerful user devices
 - Software Tech: components, compositions, discovery, agent, reasoning, recognition, knowledge processing,...

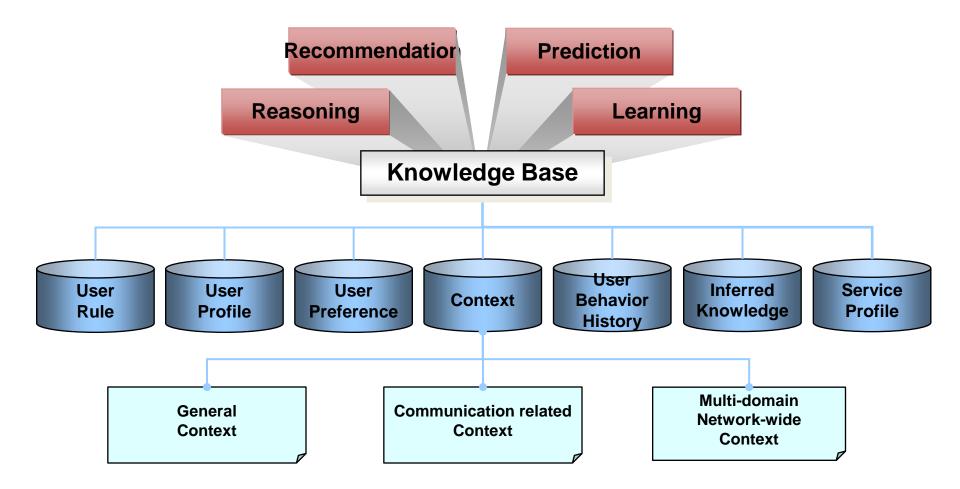
Requirements for Future User

- I-Centric
- Context Aware
- user preference
- Proactive
- Seamless Service

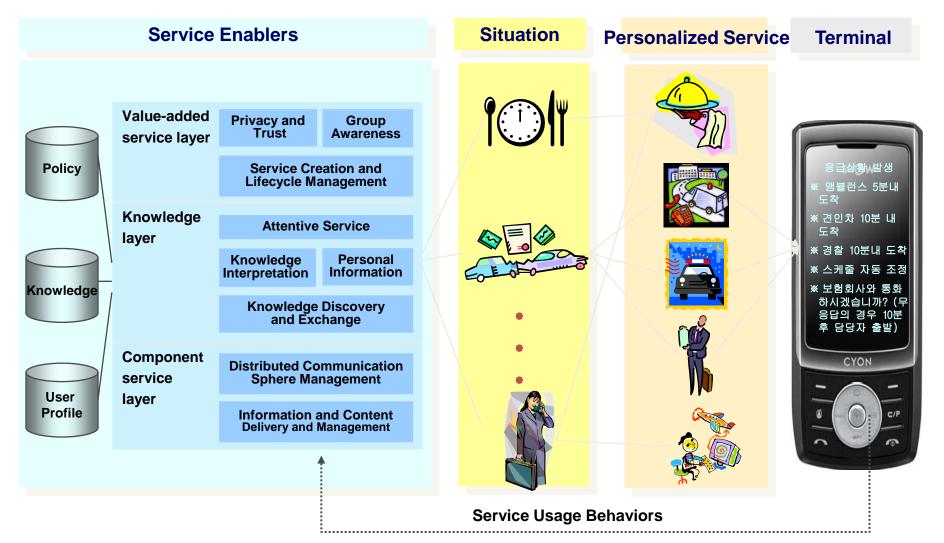
I-Centric



Context


- Human user
 - location, identity,...
- Device
 - IP address, location,...
- Network
 - identity, resources (bandwidth), QoS, security level, access type, coverage,...
- Flow
 - congestion level, latency, jitter, loss, error rate,

Knowledge


- Reasoning
- Learning
- Prediction
- Recommendation yis

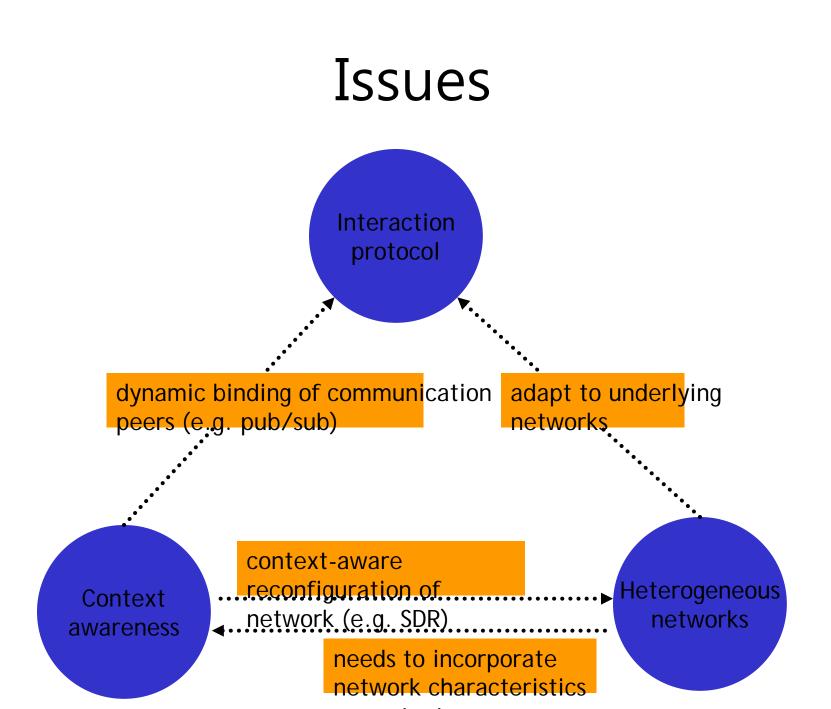
Network Intelligence

Service Scenario

Major Components

- Service Interaction
- Service Discovery
- Service Composition

A service interaction protocol for context-aware applications


Dongman Lee ICU

Introduction

- Interaction protocols
 - Request/Reply vs. Publish/Subscribe
- Why Publish/Subscribe in Context-aware computing?
 - Event producers and consumers should be decoupled to adapt to contextual changes.
- Issues of publish/subscribe
 - Subscription schemes
 - Topic-based, content-based, and type-based
 - Architecture
 - Centralized server, distributed servers, and no server
 - Event dissemination
 - Communication mechanism: Unicast or multicast
 - Event filtering

Standards & Specifications

- OMG Data Distribution Service (DDS)
- Java Message Service (J2EE JMS)
- OASIS WS Notification
- XMPP Publish-Subscribe (XEP-0060)
- CORBA Event/Notification Service
- OGSI (Open Grid Services Infrastructure) Notification
- OGC SWE SAS
 - Open Geospatial Consortium Sensor Web Enablement Sensor Alert Service

Challenges

- Context awareness vs. Heterogeneous networks
 - Aspects of currently associated network constitute current context. (e.g. attached location, network performance metrics, PAN-id)
 - Requires network characteristics to be exposed to context management
 - Or, requires network to be context-aware
- Heterogeneous networks vs. Interaction protocol
 - Communication performance is often a limiting characteristic of interaction model.
 - Requires an interaction protocol to adapt to underlying networks

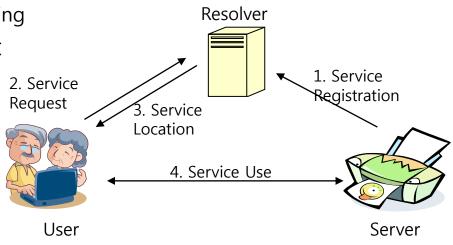
Large Scale Semantic Service Discovery in the Future Internet

April 2007

ICU, Younghee, Lee

Contents

- Introduction
- Well known protocols
- Service discovery in ad-hoc networks
- Semantic service discovery
- Large scale semantic service discovery
- Context aware service discovery


Why service discovery?

- Human will be surrounded by a various computing devices.
 - Tiny sensors, PDA, PC, CP, notebook, server...
- Extreme complexity to manage those devices
 - Zero-administration, Zero-configuration
 - Need to facilitate interaction between the computer
- => Goal of Service discovery
- Originally, to lower the burden of system configuration

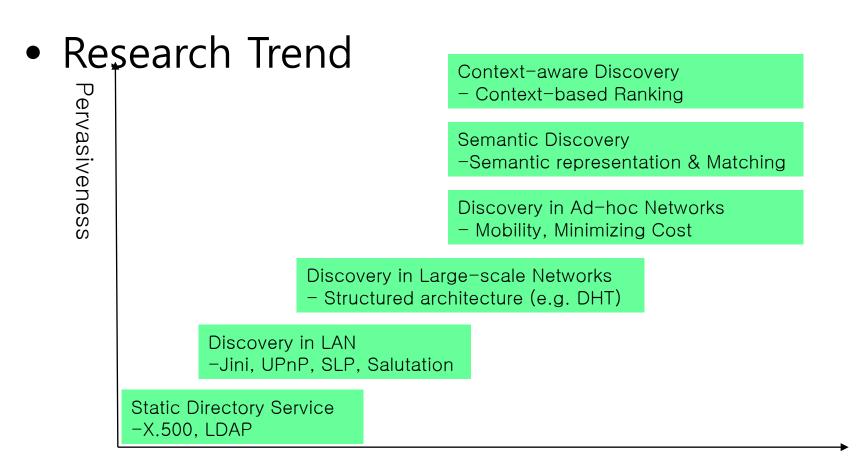
 "Plug and play" or "zero configuration"
- In more dynamic or ad-hoc environments, service discov ery is a necessity.

Service Discovery

- What is service discovery?
 - A protocol which enables users to discover the most appropriate services to the given context by automatically detecting the services available in the network.
- Components and issues
 - Directory repository
 - Directory structurization
 - Service description and matching
 - Semantic representation and matching
 - Query and service announcement
 - Semantic routing

Why service discovery?

- Scenario [1]
 - Mr. Sue visits ICU
 - He searches the Web and finds an on-line Map using his PDA.
 - But it's too small to view on his PDA
 - PDA locates the printers
 - Mr. Sue (or system) picks up a closest printer among the public printers that are allowed to be used by the guests
 - PDA requests printing service (without having a driver for the printer) without Mr. Sue's intervention
- We need to find appropriate services:
 - Printing service, Wireless connection service and Location information service.
 - Service discovery system will do that with your minimum intervention


Pervasive Service Discovery vs Web service discovery

- Web Service Discovery
 - No physical location limitation
 - Focuses only on interoperation among applications
 - Interoperability through standards such as WSDL and XML
 - Universal Description, Discovery, and Integration(UDDI)
 - The discovery and configuration process: analysts, programmers, administrators
 - Registry and data structure: mainly for EC.: too specific for Pervasive computing service
- Pervasive Service Discovery
 - Ambient Services Discovery: Local
 - Focuses also on both among applications and people
 - Integration with people and their ambient environments.

Pervasive Service Discovery

- Integration with People
 - Integration of computing devices with people
 - How do we protect personal privacy?
 - Personal information : person's presence, even health status from wearable medical device, user's intention.....
 - How much prior knowledge a user or service provider must have for service discovery?
 - Ambiguity: "print" service, "printing" service, standard service name?
- Integration with Environments
 - How can we precisely define the ambient environment ?
 - Location, current user tasks,
 - Visitor's view differs from host's view
 - Heterogeneity
 - H/W, S/W platform, network protocols : common platform?
 - Dynamic conditions
 - Time based approaches: soft state and leased based approaches

Service Discovery

Service Discovery

• Standards / Specifications

- Discovery Protocols
 - Jini, UPnP, SLP, Salutation
 - UDDI
 - Web Service Dynamic Discovery (WS-Discovery)
 - complementary to UDDI which is focusing on dealing with devices and systems that are not always connected to the network (by MS, Intel, Canon ...)
 - WSMX (Web Services Execution Environment)
 - an execution environment which enables discovery, selection, mediation, invocation and interoperation of the Semantic Web Services (WSMX working group)
 - Includes WSMO and WSML
- Service Description
 - Web Service Description Language (WSDL)
 - SOAP Service Description Language (SSDL)
 - Web Service Modeling Language (WSML)
- Ontology architecture for Semantic Description
 - DAML-S, OWL-S
 - Web Services Modeling Ontology (WSMO)

Components

- Directory repository
 - Centralized
 - Distributed
 - Hierarchical
 - Structured P2P
 - Ad hoc
- Service description
 - Attribute/value
 - Tree-like
 - XML
 - Ontology (DAML, OWL)

- Announcement
 - Register
 - Multicast/broadcast
- Query/Service Access
 - Syntax
 - Ontology
 - Programming
 language dependency

Service selection

- User vs. Protocol Selection
 - To find services for users efficiently and accurately
 - Protocol selection
 - Little user involvement
 - No reflect the actual user's will
 - User selection
 - Tedious for a user to examine many printers and compare them
 - Balance?
- Best match
 - Matches the best service based on application defined metrics: INS
- Context-awareness
 - Location, connection, person's situation
- Scope-awareness
 - To support a large amount of services, defining and grouping services in scope: location(INS with Cricket), optional attribute for location (Jini)
 - Administrative domain information: multiple hierarchy directory:
 - Yellow pages, White pages; service information in non-leaf directory: hashed (SSDS)
- QoS-awareness
 - Better service: less loaded services or better resource price ration services
 - Most protocols only support static attribute : not load of the printer
 - INS: application define their metrics and service lookups are based on the metrics

Well-known protocols

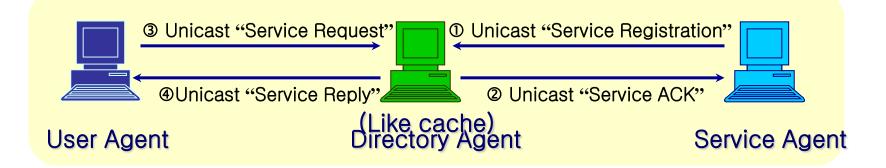
- Jini
- UPnP
- SLP
- Bluetooth SDP
- Salutation

Jini - introduction

- Java-based and distributed network-connecting technology by Sun Microsystems
- Network Plug-And-Work
- Enable spontaneous networking:
- Promote service-based architecture
- A federation of clients and services
 - Entities in federation provide and/or obtain services to/from other entities
 - All developments in Java
 - Code mobility
- Relies heavily on:
 - Object serialization
 - RMI: Remote Method Invocation

UPnP

- Service advertisement and discovery architecture supported by UPnP Forum
- Peer-to-Peer Model
- Based on current Internet protocols and technologies
 XML/HTTP, RPC
- No mobile code—instead, standardized protocols and service descriptions
- XML-based service descriptions
- UPnP V1.0 Spec in 2000


UPnP – Six Steps

- Addressing → AutoIP
 - For the IP address impaired...
- Discovery → SSDP
 - Discovery and advertisement
 - multicast discovery support
 - <u>XML</u> <u>UDP</u> unicast and multicast packets to advertise their services
- Description \rightarrow (HTTP)
- - What are the characteristics of a service?
- Control → SOAP
 - Making a service do its thing(s)
- → GENA • Eventing
 - Updates on interesting service state changes
- Presentation \rightarrow (HTTP)
 - Device GUI

Service Location Protocol (SLP)

- IETF standard protocol for service discovery and advertisement
- Designed solely for IP-based networks
- Doesn't define the protocol used between the client and server

Standard Case

Salutation Introduction

- The Salutation Architecture was invented to
 - Solve the problems of service discovery and utilization
 - Among broad set of appliances and equipments
 - In an environment of widespread connectivity and mobility
- Find and Bind on a network
 - Devices
 - Applications
 - Services
- Open Architecture
 - Independent of
 - Operating System
 - Network Protocol
 - Product Class

Service discoveries in ad-hoc networks

- No central directory service
- Limited use of network/device resources
- Distributed
- Main entities
 - Node acts as client + server
- Service announcement
 - Flooding: How to reduce flooding traffic?
 - Periodically, delta announcement (Konark)
 - Slotted (DEAPSpace uses slotted+periodic)
 - Cache advertisements
 - TTL

Service discovery in ad hoc networks

- Service description
 - What is described?
 - service name, type, attribute, keywords, properties and functions
 - Service hierarchy tree like structure (Konark, GSD)
 - Interface format, e.g., function prototype.
 - How is it described and stored?
 - WSDL file (Konark)
 - Data structures similar to ASN.1 (DEAPSpace)
 - Encoder/decoder
 - Ontology: OWL, DAML+OIL (GSD)
- Access to the service
 - RPC
 - SOAP/HTTP (Konark)
 - Specific Interface, e.g., function prototype
 - Encoder/decoder (DEAPSpace)
 - Query formation
 - Path based or syntax based
 - Request routing
 - Policy based (Allia)
 - Group based (GSD)

Semantic service discovery

- Difficulties of Service Discovery
 - Different Resources
 - Computing Devices, Software Services, Information Sources
 - Representations, Capabilities, Usage
 - Distinct Environmental Characteristics
 - Preference, Permission, Context
- Research Issues
 - Abstract Representations
 - Semantic Matching
 - Context-awareness
- Use of semantic ontology
 - Inexact/exact querying
 - More powerful reasoning engines and AI tools
 - Enhancing current service location protocols

Context vs. Semantics

- Context
 - Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object)
 - Identity, Location, Status (or Activity), Time
- Semantics
 - Abstract notions which can be implicitly derived to identify the differences and correlations between objects/concepts
 - What is the semantics of "Alarm"?
 - Definition in dictionary
 - » Sudden fear produced by awareness of danger
 - » A noise warning of danger
 - » A bell and etc. which sounds to warn of danger or to wake a person from sleep

Semantic service discovery

• DReggie [8]

- Enhanced Jini lookup service to enables semantic service discovery of Jini enabled services.
- Target application : M-commerce
- ◆ Two main concepts for service discovery
 - DAML based service ontology
 - service components and their some properties such as service name, capability, requirements.
 - Prolog reasoner for semantic discovery

• Enhanced SDP in Bluetooth [10]

- Semantic service discovery in ad hoc network
- Two main concepts for semantic matching
 - DAML based service ontology
 - Prolog-based XSB Reasoning engine

• Limitation

- Does not assume pervasive environment : need components for evaluation of dynamic attributes
- ◆ Ontology restriction : describe only service

Location-aware service discovery

Where is the closest Italian restaurant to me?

- Location sensing
- Nomadic users
- Handy devices

Future?

- Human does not know future, even tomorrow what may take place, we do not know?
 - How can we imagine after 20 years later application or services?